PrintForm
Definitions
exponent
Sections
AutomataTheory
Doc
At:
auto2
lemma
3
1
1
1
2
1
1
1.
Alph:
Type
2.
R:
Alph*
Alph*
Prop
3.
n:
4.
x:Alph*. R(x,x)
5.
x,y:Alph*. R(x,y)
R(y,x)
6.
x,y,z:Alph*. R(x,y) & R(y,z)
R(x,z)
7.
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y)
8.
w:
n
Alph*
9.
l:Alph*.
i:
n. R(l,w(i))
10.
a:
Alph*
11.
b:
Alph*
12.
c:
Alph*
13.
||a||
n
n
14.
f:
Alph*
n
15.
x:Alph*. R(x,w(f(x)))
16.
f1:
n
n
(n
n)
17.
Bij(
n
n;
(n
n); f1)
18.
i:
(n
n+1)
19.
j:
(n
n+1)
20.
i < j
21.
f1( < f((a[||a||-i..||a||
]) @ b),f((a[||a||-i..||a||
]) @ c) > ) = f1( < f((a[||a||-j..||a||
]) @ b),f((a[||a||-j..||a||
]) @ c) > )
||(a[0..||a||-j
]) @ (a[||a||-i..||a||
])|| < ||a|| & R((a @ b),((a[0..||a||-j
]) @ (a[||a||-i..||a||
])) @ b) & R((a @ c),((a[0..||a||-j
]) @ (a[||a||-i..||a||
])) @ c)
By:
Analyze 0
Generated subgoals:
1
||(a[0..||a||-j
]) @ (a[||a||-i..||a||
])|| < ||a||
2
R((a @ b),((a[0..||a||-j
]) @ (a[||a||-i..||a||
])) @ b) & R((a @ c),((a[0..||a||-j
]) @ (a[||a||-i..||a||
])) @ c)
About: