PrintForm
Definitions
finite
sets
Sections
AutomataTheory
Doc
At:
fin
dec
fin
2
1
2
2
4
1
1
5
1
1
1
1
1.
n:
2.
0 < n
3.
T:Type, B:(T
Prop). (
f:(
(n-1)
T), g:(T
(n-1)). InvFuns(
(n-1); T; f; g)) & (
t:T. Dec(B(t)))
(
m:
, f:(
m
{t:T| B(t) }), g:({t:T| B(t) }
m). InvFuns(
m; {t:T| B(t) }; f; g))
4.
T:
Type
5.
B:
T
Prop
6.
f:
n
T
7.
g:
T
n
8.
g o f = Id
9.
f o g = Id
10.
t:T. Dec(B(t))
11.
f
(n-1)
{t:T| g(t) < n-1 }
12.
g
{t:T| g(t) < n-1 }
(n-1)
13.
m:
14.
f1:
m
{t:{t:T| g(t) < n-1 }| B(t) }
15.
g@0:
{t:{t:T| g(t) < n-1 }| B(t) }
m
16.
g@0 o f1 = Id
17.
f1 o g@0 = Id
18.
B(f(n-1))
19.
f2:
(m+1)
{t:T| B(t) }
20.
f2 = (
x.if x=
m
f(n-1) else f1(x) fi)
21.
g2:
{t:T| B(t) }
(m+1)
22.
g2 = (
x.if g(x)=
n-1
m else g@0(x) fi)
23.
x:
(m+1)
if g(if x=
m
f(n-1) else f1(x) fi)=
n-1
m else g@0(if x=
m
f(n-1) else f1(x) fi) fi = x
(m+1)
By:
((SplitOnNthConclITE 2) THEN SplitOnConclITE) THENA Try (Complete Auto)
Generated subgoals:
1
24.
x = m
25.
g(f(n-1)) = n-1
m = x
(m+1)
2
24.
x = m
25.
g(f(n-1)) = n-1
g@0(f(n-1)) = x
(m+1)
3
24.
x = m
25.
g(f1(x)) = n-1
m = x
(m+1)
4
24.
x = m
25.
g(f1(x)) = n-1
g@0(f1(x)) = x
(m+1)
About: