(26steps total)
PrintForm
Definitions
Lemmas
graph
1
2
Sections
Graphs
Doc
At:
finite-partition
2
2
1
1
1.
n:
2.
0 < n
3.
k:
4.
c:
n
k
5.
p:
k
(
List)
6.
sum(||p(j)|| | j < k) = n-1
7.
j:
k, x,y:
||p(j)||. x < y
(p(j))[x] > (p(j))[y]
8.
j:
k, x:
||p(j)||. (p(j))[x] < n-1 & c((p(j))[x]) = j
9.
j:
k
10.
x,y:
||p(j)||. x < y
(p(j))[x] > (p(j))[y]
11.
c(n-1) = j
x@0,y:
||[(n-1) / (p(j))]||. x@0 < y
[(n-1) / (p(j))][x@0] > [(n-1) / (p(j))][y]
By:
Reduce 0
THEN
Analyze 0
THEN
Analyze 0
THEN
CaseNat 0 `x@0'
THEN
Reduce 0
THEN
RWW
Thm*
a:T, as:T List, i:
. 0 < i
i
||as||
[a / as][i] = as[(i-1)] 0
Generated subgoals:
1
12.
x@0:
(||p(j)||+1)
13.
y:
(||p(j)||+1)
14.
x@0 = 0
15.
0 < y
n-1 > (p(j))[(y-1)]
1
step
 
2
12.
x@0:
(||p(j)||+1)
13.
y:
(||p(j)||+1)
14.
x@0 = 0
15.
x@0 < y
(p(j))[(x@0-1)] > (p(j))[(y-1)]
1
step
About:
(26steps total)
PrintForm
Definitions
Lemmas
graph
1
2
Sections
Graphs
Doc