(26steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: finite-partition 2

1. n:
2. 0 < n
3. k:, c:((n-1)k). p:(k( List)). sum(||p(j)|| | j < k) = n-1 & (j:k, x,y:||p(j)||. x < y (p(j))[x] > (p(j))[y]) & (j:k, x:||p(j)||. (p(j))[x] < n-1 & c((p(j))[x]) = j)
k:, c:(nk). p:(k( List)). sum(||p(j)|| | j < k) = n & (j:k, x,y:||p(j)||. x < y (p(j))[x] > (p(j))[y]) & (j:k, x:||p(j)||. (p(j))[x] < n & c((p(j))[x]) = j)

By: (((RepeatFor 2 ((ParallelOp -1) THEN (Thin -3))) THEN ExRepD THEN (InstConcl [j.if c(n-1)=j [(n-1) / (p(j))] else p(j) fi])) THEN (Reduce 0) THEN (Analyze 0)) THENA ((RepeatFor 5 (Analyze THEN (Try (Complete Auto)))) THEN (GenConcl ((p1(j))[x] = a)) THEN (Try (Complete Auto)) THEN Analyze)

Generated subgoals:

13. k:
4. c: nk
5. p: k( List)
6. sum(||p(j)|| | j < k) = n-1
7. j:k, x,y:||p(j)||. x < y (p(j))[x] > (p(j))[y]
8. j:k, x:||p(j)||. (p(j))[x] < n-1 & c((p(j))[x]) = j
sum(||if c(n-1)=j [(n-1) / (p(j))] else p(j) fi|| | j < k) = n
8 steps
 
23. k:
4. c: nk
5. p: k( List)
6. sum(||p(j)|| | j < k) = n-1
7. j:k, x,y:||p(j)||. x < y (p(j))[x] > (p(j))[y]
8. j:k, x:||p(j)||. (p(j))[x] < n-1 & c((p(j))[x]) = j
(j:k, x,y:||if c(n-1)=j [(n-1) / (p(j))] else p(j) fi||. x < y if c(n-1)=j [(n-1) / (p(j))] else p(j) fi[x] > if c(n-1)=j [(n-1) / (p(j))] else p(j) fi[y]) & (j:k, x:||if c(n-1)=j [(n-1) / (p(j))] else p(j) fi||. if c(n-1)=j [(n-1) / (p(j))] else p(j) fi[x] < n & c(if c(n-1)=j [(n-1) / (p(j))] else p(j) fi[x]) = j)
14 steps

About:
listconsifthenelseintnatural_numbersubtractless_than
lambdaapplyfunctionequalimpliesandall
exists

(26steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc