(26steps total)
PrintForm
Definitions
Lemmas
graph
1
2
Sections
Graphs
Doc
At:
finite-partition
2
2
1.
n:
2.
0 < n
3.
k:
4.
c:
n
k
5.
p:
k
(
List)
6.
sum(||p(j)|| | j < k) = n-1
7.
j:
k, x,y:
||p(j)||. x < y
(p(j))[x] > (p(j))[y]
8.
j:
k, x:
||p(j)||. (p(j))[x] < n-1 & c((p(j))[x]) = j
(
j:
k, x,y:
||if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi||. x < y
if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[x] > if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[y]) & (
j:
k, x:
||if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi||. if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[x] < n & c(if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[x]) = j)
By:
Analyze 0
Generated subgoals:
1
j:
k, x,y:
||if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi||. x < y
if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[x] > if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[y]
4
steps
 
2
j:
k, x:
||if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi||. if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[x] < n & c(if c(n-1)=
j
[(n-1) / (p(j))] else p(j) fi[x]) = j
9
steps
About:
(26steps total)
PrintForm
Definitions
Lemmas
graph
1
2
Sections
Graphs
Doc