WhoCites Definitions mb hybrid Sections GenAutomata Doc

Who Cites fusion condition?
fusion_condition Def I fuses P == tr:Trace(E). (m:Label. P( < tr > _m)) I(tr) P(tr)
Thm* E:TaggedEventStruct, I,P:TraceProperty(E). (I fuses P) Prop
prop_and Def (P Q)(L) == P(L) & Q(L)
Thm* T:Type, P,Q:(TProp). (P Q) TProp
tagged_event_str Def TaggedEventStruct == E:TypeM:MessageStruct(E|M|)(ELabel)(E)(ELabel)Top
Thm* TaggedEventStruct Type{i'}
trace_property Def TraceProperty(E) == (|E| List)Prop
tag_sublist Def < tr > _tg == filter(e.tag(E)(e) = tg;tr)
Thm* E:TaggedEventStruct, L:|E| List, t:Label. < L > _t |E| List
message_str Def MessageStruct == M:TypeC:DecidableEquiv(M|C|)(MLabel)(M)Top
Thm* MessageStruct Type{i'}
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
str_trace Def Trace(E) == |E| List
dequiv Def DecidableEquiv == T:TypeE:TTEquivRel(T)((_1 E _2))Top
Thm* DecidableEquiv Type{i'}
top Def Top == Void given Void
Thm* Top Type
carrier Def |S| == 1of(S)
Thm* S:Structure. |S| Type
event_tag Def tag(E) == 1of(2of(2of(2of(2of(2of(E))))))
Thm* E:TaggedEventStruct. tag(E) |E|Label
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case Def Case(value) body == body(value,value)
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)
Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop
sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)
Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop
refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

About:
spreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrue
ifthenelseassertvoidintnatural_numberint_eqatom
tokenatom_equniondecide
setisectlambdaapplyfunctionrecursive_def_notice
recuniversemembertoppropimpliesandfalsetrue
all!abstraction

WhoCites Definitions mb hybrid Sections GenAutomata Doc