Who Cites R safety? | |
R_safety | Def safetyR(E)(tr_1,tr_2) == tr_2 tr_1 |
Thm* E:EventStruct. safetyR(E) (|E| List)(|E| List)Prop | |
R_strong_safety | Def R_strong_safety(E)(tr_1,tr_2) == sublist(|E|;tr_2;tr_1) |
event_str | Def EventStruct == E:TypeM:MessageStruct(E|M|)(ELabel)(E)Top |
Thm* EventStruct Type{i'} | |
trace_property | Def TraceProperty(E) == (|E| List)Prop |
message_str | Def MessageStruct == M:TypeC:DecidableEquiv(M|C|)(MLabel)(M)Top |
Thm* MessageStruct Type{i'} | |
carrier | Def |S| == 1of(S) |
Thm* S:Structure. |S| Type | |
iseg | Def l1 l2 == l:T List. l2 = (l1 @ l) |
Thm* T:Type, l1,l2:T List. l1 l2 Prop | |
preserved_by | Def R preserves P == x,y:T. P(x) (x R y) P(y) |
Thm* T:Type, P:(TProp), R:(TTProp). R preserves P Prop | |
sublist | Def sublist(T;L1;L2) == f:(||L1||||L2||). increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))] T) |
Thm* T:Type, L1,L2:T List. sublist(T;L1;L2) Prop | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
dequiv | Def DecidableEquiv == T:TypeE:TTEquivRel(T)((_1 E _2))Top |
Thm* DecidableEquiv Type{i'} | |
top | Def Top == Void given Void |
Thm* Top Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
increasing | Def increasing(f;k) == i:(k-1). f(i) < f(i+1) |
Thm* k:, f:(k). increasing(f;k) Prop | |
int_seg | Def {i..j} == {k:| i k < j } |
Thm* m,n:. {m..n} Type | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
lelt | Def i j < k == ij & j < k |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case | Def Case(value) body == body(value,value) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y) |
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop | |
sym | Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a) |
Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop | |
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
not | Def A == A False |
Thm* A:Prop. (A) Prop |
About: