|  | Who Cites P  causal? | 
|  | 
| P_causal | Def Causal(E)(tr)
==  i:  ||tr||.  j:  ||tr||. j  i  &  (is-send(E)(tr[j]))  &  (tr[j] =msg=(E) tr[i]) | 
 | |  | Thm*  E:EventStruct. Causal(E)  (|E| List)   Prop | 
|  | 
| R_send_enabled | Def send-enabledR(E)(L_1,L_2) ==  x:|E|.  (is-send(E)(x))  &  L_2 = (L_1 @ [x]) | 
 | |  | Thm*  E:EventStruct. send-enabledR(E)  (|E| List)   (|E| List)   Prop | 
|  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive) | 
 | |  | Thm*  T:Type, as,bs:T List. (as @ bs)  T List | 
|  | 
| event_str | Def EventStruct == E:Type  M:MessageStruct  (E   |M|)  (E   Label)  (E    )  Top | 
 | |  | Thm* EventStruct  Type{i'} | 
|  | 
| message_str | Def MessageStruct == M:Type  C:DecidableEquiv  (M   |C|)  (M   Label)  (M    )  Top | 
 | |  | Thm* MessageStruct  Type{i'} | 
|  | 
| lbl | Def Label == {p:Pattern|  ground_ptn(p) } | 
 | |  | Thm* Label  Type | 
|  | 
| dequiv | Def DecidableEquiv == T:Type  E:T   T     EquivRel(T)(  (_1 E _2))  Top | 
 | |  | Thm* DecidableEquiv  Type{i'} | 
|  | 
| assert | Def  b == if b  True else False fi | 
 | |  | Thm*  b:  . b  Prop | 
|  | 
| carrier | Def |S| == 1of(S) | 
 | |  | Thm*  S:Structure. |S|  Type | 
|  | 
| event_is_snd | Def is-send(E) == 1of(2of(2of(2of(2of(E))))) | 
 | |  | Thm*  E:EventStruct. is-send(E)  |E|    | 
|  | 
| event_msg_eq | Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2)) | 
 | |  | Thm*  E:EventStruct. =msg=(E)  |E|   |E|    | 
|  | 
| int_seg | Def {i..j  } == {k:  | i  k  <  j } | 
 | |  | Thm*  m,n:  . {m..n  }  Type | 
|  | 
| lelt | Def i  j  <  k == i  j  &  j < k | 
|  | 
| le | Def A  B ==  B < A | 
 | |  | Thm*  i,j:  . (i  j)  Prop | 
|  | 
| length | Def ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive) | 
 | |  | Thm*  A:Type, l:A List. ||l||    | 
 | |  | Thm* ||nil||    | 
|  | 
| not | Def  A == A   False | 
 | |  | Thm*  A:Prop. (  A)  Prop | 
|  | 
| preserved_by | Def R preserves P ==  x,y:T. P(x)   (x R y)   P(y) | 
 | |  | Thm*  T:Type, P:(T   Prop), R:(T   T   Prop). R preserves P  Prop | 
|  | 
| select | Def l[i] == hd(nth_tl(i;l)) | 
 | |  | Thm*  A:Type, l:A List, n:  . 0  n   n < ||l||   l[n]  A | 
|  | 
| event_msg | Def msg(E) == 1of(2of(2of(E))) | 
 | |  | Thm*  E:EventStruct. msg(E)  |E|   |MS(E)| | 
|  | 
| event_msg_str | Def MS(E) == 1of(2of(E)) | 
 | |  | Thm*  E:EventStruct. MS(E)  MessageStruct | 
|  | 
| msg_eq | Def =(M)(m_1,m_2)
== ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))   sender(M)(m_1) =  sender(M)(m_2)   (uid(M)(m_1)=  uid(M)(m_2)) | 
 | |  | Thm*  M:MessageStruct. =(M)  |M|   |M|    | 
|  | 
| msg_id | Def uid(MS) == 1of(2of(2of(2of(2of(MS))))) | 
 | |  | Thm*  M:MessageStruct. uid(M)  |M|    | 
|  | 
| msg_sender | Def sender(MS) == 1of(2of(2of(2of(MS)))) | 
 | |  | Thm*  M:MessageStruct. sender(M)  |M|   Label | 
|  | 
| msg_content | Def content(MS) == 1of(2of(2of(MS))) | 
 | |  | Thm*  M:MessageStruct. content(M)  |M|   |cEQ(M)| | 
|  | 
| msg_content_eq | Def cEQ(MS) == 1of(2of(MS)) | 
 | |  | Thm*  M:MessageStruct. cEQ(M)  DecidableEquiv | 
|  | 
| eq_dequiv | Def =(DE) == 1of(2of(DE)) | 
 | |  | Thm*  E:DecidableEquiv. =(E)  |E|   |E|    | 
|  | 
| pi1 | Def 1of(t) == t.1 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 1of(p)  A | 
|  | 
| pi2 | Def 2of(t) == t.2 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 2of(p)  B(1of(p)) | 
|  | 
| top | Def Top == Void given Void | 
 | |  | Thm* Top  Type | 
|  | 
| nth_tl | Def nth_tl(n;as) == if n   0  as else nth_tl(n-1;tl(as)) fi  (recursive) | 
 | |  | Thm*  A:Type, as:A List, i:  . nth_tl(i;as)  A List | 
|  | 
| eq_lbl | Def l1 =  l2
 == Case(l1)
 Case ptn_atom(x) = > 
 Case(l2)
 Case ptn_atom(y) = > 
 x=  y  Atom
 Default = >  false  Case ptn_int(x) = > 
 Case(l2)
 Case ptn_int(y) = > 
 x=  y
 Default = >  false  Case ptn_var(x) = > 
 Case(l2)
 Case ptn_var(y) = > 
 x=  y  Atom
 Default = >  false  Case ptn_pr( < x, y > ) = > 
 Case(l2)
 Case ptn_pr( < u, v > ) = > 
 x =  u   y =  v
 Default = >  false  Default = >  false  (recursive) | 
 | |  | Thm*  l1,l2:Pattern. l1 =  l2    | 
|  | 
| ground_ptn | Def ground_ptn(p)
 == Case(p)
 Case ptn_var(v) = > 
 false  Case ptn_pr( < x, y > ) = > 
 ground_ptn(x)   ground_ptn(y)
 Default = >  true  (recursive) | 
 | |  | Thm*  p:Pattern. ground_ptn(p)    | 
|  | 
| case_ptn_var | Def Case ptn_var(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| case_ptn_int | Def Case ptn_int(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h | 
 | |  | Thm*  A:Type, l:A List. ||l||  1   hd(l)  A | 
 | |  | Thm*  A:Type, l:A List  . hd(l)  A | 
|  | 
| eq_int | Def i=  j == if i=j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i=  j)    | 
|  | 
| band | Def p   q == if p  q else false  fi | 
 | |  | Thm*  p,q:  . (p   q)    | 
|  | 
| ptn | Def Pattern == rec(T.ptn_con(T)) | 
 | |  | Thm* Pattern  Type | 
|  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t | 
 | |  | Thm*  A:Type, l:A List. tl(l)  A List | 
|  | 
| le_int | Def i   j ==   j <  i | 
 | |  | Thm*  i,j:  . (i   j)    | 
|  | 
| case_default | Def Default = >  body(value,value) == body | 
|  | 
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = >  body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
 InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) | 
|  | 
| case | Def Case(value) body == body(value,value) | 
|  | 
| eq_atom | Def x=  y  Atom == if x=y  Atom  true  ; false  fi | 
 | |  | Thm*  x,y:Atom. x=  y  Atom    | 
|  | 
| case_ptn_atom | Def Case ptn_atom(x) = >  body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| ptn_con | Def ptn_con(T) == Atom+  +Atom+(T  T) | 
 | |  | Thm*  T:Type. ptn_con(T)  Type | 
|  | 
| equiv_rel | Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y))  &  Sym x,y:T. E(x;y)  &  Trans x,y:T. E(x;y) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). (EquivRel x,y:T. E(x,y))  Prop | 
|  | 
| lt_int | Def i <  j == if i < j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i <  j)    | 
|  | 
| bnot | Def   b == if b  false  else true  fi | 
 | |  | Thm*  b:  .   b    | 
|  | 
| case_inl | Def inl(x) = >  body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) | 
|  | 
| case_inr | Def inr(x) = >  body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) | 
|  | 
| trans | Def Trans x,y:T. E(x;y) ==  a,b,c:T. E(a;b)   E(b;c)   E(a;c) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). Trans x,y:T. E(x,y)  Prop | 
|  | 
| sym | Def Sym x,y:T. E(x;y) ==  a,b:T. E(a;b)   E(b;a) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). Sym x,y:T. E(x,y)  Prop | 
|  | 
| refl | Def Refl(T;x,y.E(x;y)) ==  a:T. E(a;a) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). Refl(T;x,y.E(x,y))  Prop |