PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 1 5

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1

NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of([ < p,nil > ][(i+1-||map(c. < 1of(c),a.2of(c) > ;C)||)]))

By: Assert (i+1-||map(c. < 1of(c),a.2of(c) > ;C)|| = 0)

Generated subgoal:

116. i+1-||map(c. < 1of(c),a.2of(c) > ;C)|| = 0 1
NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of([ < p,nil > ][(i+1-||map(c. < 1of(c),a.2of(c) > ;C)||)]))


About:
applylambdapairconsnilsubtractaddnatural_number
equaluniverselistproductallintless_than