PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1

NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]))

By:
RW (NthC 3 (LemmaC Thm* as,bs:T*, i:{||as||..(||as||+||bs||)}. (as @ bs)[i] = bs[(i-||as||)])) 0
THEN
Reduce 0


Generated subgoals:

15. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1
i < ||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||
25. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1
i < ||map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ]||
35. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1
||rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))||1
45. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1
||map(c. < 1of(c),a.2of(c) > ;C)||i+1
5 NDA (1of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]) ,hd(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))) ,1of([ < p,nil > ][(i+1-||map(c. < 1of(c),a.2of(c) > ;C)||)]))


About:
applylambdapairconsniladdnatural_numberuniverse
alllistequalsubtractproductintless_than