PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 2 3 2

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1

NDA (1of((c. < 1of(c),a.2of(c) > )(C[i])) ,hd(rev(2of((c. < 1of(c),a.2of(c) > )(C[i])))) ,1of((c. < 1of(c),a.2of(c) > )(C[(i+1)])))

By: Reduce 0

Generated subgoal:

1 NDA(1of(C[i]),hd((rev(2of(C[i])) @ [a])),1of(C[(i+1)]))


About:
applylambdapairconsaddnatural_numberuniverselist
productallsubtractintless_thanequalnil