PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 2 3

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1

NDA (1of(map(c. < 1of(c),a.2of(c) > ;C)[i]) ,hd(rev(2of(map(c. < 1of(c),a.2of(c) > ;C)[i]))) ,1of(map(c. < 1of(c),a.2of(c) > ;C)[(i+1)]))

By: RWH (LemmaC Thm* f:(AB), as:A*, n:||as||. map(f;as)[n] = f(as[n])) 0

Generated subgoals:

15. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1
||rev(2of(map(c. < 1of(c),a.2of(c) > ;C)[i]))||1
2 NDA (1of((c. < 1of(c),a.2of(c) > )(C[i])) ,hd(rev(2of((c. < 1of(c),a.2of(c) > )(C[i])))) ,1of((c. < 1of(c),a.2of(c) > )(C[(i+1)])))


About:
applylambdapairconsaddnatural_numberuniverseall
functionlistequalproductsubtractintless_than