PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i < ||C||-1
16. i+1-||map(c. < 1of(c),a.2of(c) > ;C)|| = 0 1
17. 00

nil = rev(tl((rev(2of(C[i])) @ [a])))

By: RWH (LemmaC Thm* l,m:T*. ||l|| = 0 ||m|| > 0 tl((l @ m)) = tl(m)) 0

Generated subgoals:

1 ||rev(2of(C[i]))|| = 0
2 ||nil||0 ...SupInf: lemma failure: non_neg_length
3 nil = rev(tl([a]))


About:
equallistnilconsuniverseallimpliesint
natural_numberproductsubtractapplyless_thanaddlambdapair