Nuprl Lemma : refl_cl_is_order

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  trans(T;R)  order(T;Rosupposing irrefl(T;R)


Proof




Definitions occuring in Statement :  refl_cl: Eo xxorder: order(T;R) xxirrefl: irrefl(T;R) xxtrans: trans(T;E) uimplies: supposing a uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  xxorder: order(T;R) uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T xxirrefl: irrefl(T;R) irrefl: Irrefl(T;x,y.E[x; y]) not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: and: P ∧ Q xxtrans: trans(T;E) xxrefl: refl(T;E) trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] refl_cl: Eo xxanti_sym: anti_sym(T;R) anti_sym: AntiSym(T;x,y.R[x; y]) or: P ∨ Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  refl_cl_wf xxtrans_wf xxirrefl_wf iff_weakening_equal equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality lambdaEquality dependent_functionElimination voidElimination applyEquality hypothesis universeEquality rename lambdaFormation independent_pairFormation lemma_by_obid because_Cache axiomEquality functionEquality cumulativity inlFormation unionElimination equalityTransitivity inrFormation equalitySymmetry independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    trans(T;R)  {}\mRightarrow{}  order(T;R\msupzero{})  supposing  irrefl(T;R)



Date html generated: 2016_05_15-PM-00_01_47
Last ObjectModification: 2015_12_26-PM-11_26_05

Theory : gen_algebra_1


Home Index