Nuprl Lemma : refl_cl_is_order
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  trans(T;R) ⇒ order(T;Ro) supposing irrefl(T;R)
Proof
Definitions occuring in Statement : 
refl_cl: Eo, 
xxorder: order(T;R), 
xxirrefl: irrefl(T;R), 
xxtrans: trans(T;E), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
xxorder: order(T;R), 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
xxirrefl: irrefl(T;R), 
irrefl: Irrefl(T;x,y.E[x; y]), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
and: P ∧ Q, 
xxtrans: trans(T;E), 
xxrefl: refl(T;E), 
trans: Trans(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
refl_cl: Eo, 
xxanti_sym: anti_sym(T;R), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
or: P ∨ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
refl_cl_wf, 
xxtrans_wf, 
xxirrefl_wf, 
iff_weakening_equal, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
hypothesis, 
universeEquality, 
rename, 
lambdaFormation, 
independent_pairFormation, 
lemma_by_obid, 
because_Cache, 
axiomEquality, 
functionEquality, 
cumulativity, 
inlFormation, 
unionElimination, 
equalityTransitivity, 
inrFormation, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    trans(T;R)  {}\mRightarrow{}  order(T;R\msupzero{})  supposing  irrefl(T;R)
Date html generated:
2016_05_15-PM-00_01_47
Last ObjectModification:
2015_12_26-PM-11_26_05
Theory : gen_algebra_1
Home
Index