Nuprl Lemma : s_part_functionality_wrt_breqv
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ]. ((R <≡>{T} R')
⇒ ((R\) <≡>{T} (R'\)))
Proof
Definitions occuring in Statement :
s_part: E\
,
binrel_eqv: E <≡>{T} E'
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
s_part: E\
,
binrel_eqv: E <≡>{T} E'
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
and: P ∧ Q
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
subtype_rel: A ⊆r B
Lemmas referenced :
all_wf,
iff_wf,
and_wf,
not_wf,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
hypothesisEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
applyEquality,
hypothesis,
functionEquality,
cumulativity,
universeEquality,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
addLevel,
productElimination,
independent_pairFormation,
impliesFunctionality,
dependent_functionElimination,
independent_functionElimination,
because_Cache,
andLevelFunctionality,
impliesLevelFunctionality
Latex:
\mforall{}[T:Type]. \mforall{}[R,R':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. ((R <\mequiv{}>\{T\} R') {}\mRightarrow{} ((R\mbackslash{}) <\mequiv{}>\{T\} (R'\mbackslash{})))
Date html generated:
2016_05_15-PM-00_01_36
Last ObjectModification:
2015_12_26-PM-11_26_12
Theory : gen_algebra_1
Home
Index