Nuprl Lemma : s_part_functionality_wrt_breqv

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R')  ((R\) <≡>{T} (R'\)))


Proof




Definitions occuring in Statement :  s_part: E\ binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  s_part: E\ binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q not: ¬A rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  all_wf iff_wf and_wf not_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality equalityTransitivity equalitySymmetry independent_isectElimination addLevel productElimination independent_pairFormation impliesFunctionality dependent_functionElimination independent_functionElimination because_Cache andLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  ((R\mbackslash{})  <\mequiv{}>\{T\}  (R'\mbackslash{})))



Date html generated: 2016_05_15-PM-00_01_36
Last ObjectModification: 2015_12_26-PM-11_26_12

Theory : gen_algebra_1


Home Index