Nuprl Lemma : s_part_functionality_wrt_breqv
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R') 
⇒ ((R\) <≡>{T} (R'\)))
Proof
Definitions occuring in Statement : 
s_part: E\
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
s_part: E\
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
all_wf, 
iff_wf, 
and_wf, 
not_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
andLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  ((R\mbackslash{})  <\mequiv{}>\{T\}  (R'\mbackslash{})))
Date html generated:
2016_05_15-PM-00_01_36
Last ObjectModification:
2015_12_26-PM-11_26_12
Theory : gen_algebra_1
Home
Index