Nuprl Lemma : sp_refl_cl_cancel
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  ((ro\) <≡>{T} r) supposing (st_anti_sym(T;r) and irrefl(T;r))
Proof
Definitions occuring in Statement : 
s_part: E\
, 
refl_cl: Eo
, 
xxst_anti_sym: st_anti_sym(T;R)
, 
xxirrefl: irrefl(T;R)
, 
binrel_eqv: E <≡>{T} E'
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
xxirrefl: irrefl(T;R)
, 
irrefl: Irrefl(T;x,y.E[x; y])
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
xxst_anti_sym: st_anti_sym(T;R)
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
and_wf, 
binrel_le_antisymmetry, 
s_part_wf, 
refl_cl_wf, 
sp_refl_cl_le_rel, 
rel_le_sp_refl_cl, 
xxst_anti_sym_wf, 
xxirrefl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
hypothesis, 
universeEquality, 
rename, 
lemma_by_obid, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((r\msupzero{}\mbackslash{})  <\mequiv{}>\{T\}  r)  supposing  (st\_anti\_sym(T;r)  and  irrefl(T;r))
Date html generated:
2016_05_15-PM-00_02_10
Last ObjectModification:
2015_12_26-PM-11_25_37
Theory : gen_algebra_1
Home
Index