Nuprl Lemma : grp_car_inc
|(<ℤ+>↓hgrp)| ⊆r ℕ
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
guard: {T}
, 
uimplies: b supposing a
, 
hgrp_car: |g|+
, 
grp_leq: a ≤ b
, 
int_add_grp: <ℤ+>
, 
grp_le: ≤b
, 
pi2: snd(t)
, 
grp_id: e
, 
infix_ap: x f y
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
grp_car_wf, 
hgrp_of_ocgrp_wf, 
int_add_grp_wf2, 
hgrp_car_properties, 
int_add_grp_wf, 
mon_subtype_grp_sig, 
grp_subtype_mon, 
abgrp_subtype_grp, 
subtype_rel_transitivity, 
abgrp_wf, 
grp_wf, 
mon_wf, 
grp_sig_wf, 
assert_of_le_int, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
applyEquality, 
instantiate, 
independent_isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
natural_numberEquality, 
productElimination, 
dependent_set_memberEquality
Latex:
|(<\mBbbZ{}+>\mdownarrow{}hgrp)|  \msubseteq{}r  \mBbbN{}
Date html generated:
2019_10_15-AM-10_33_13
Last ObjectModification:
2018_09_17-PM-06_24_04
Theory : groups_1
Home
Index