Nuprl Lemma : grp_car_inc
|(<ℤ+>↓hgrp)| ⊆r ℕ
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>, 
hgrp_of_ocgrp: g↓hgrp, 
grp_car: |g|, 
nat: ℕ, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
hgrp_of_ocgrp: g↓hgrp, 
grp_car: |g|, 
pi1: fst(t), 
guard: {T}, 
uimplies: b supposing a, 
hgrp_car: |g|+, 
grp_leq: a ≤ b, 
int_add_grp: <ℤ+>, 
grp_le: ≤b, 
pi2: snd(t), 
grp_id: e, 
infix_ap: x f y, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
nat: ℕ, 
prop: ℙ
Lemmas referenced : 
grp_car_wf, 
hgrp_of_ocgrp_wf, 
int_add_grp_wf2, 
hgrp_car_properties, 
int_add_grp_wf, 
mon_subtype_grp_sig, 
grp_subtype_mon, 
abgrp_subtype_grp, 
subtype_rel_transitivity, 
abgrp_wf, 
grp_wf, 
mon_wf, 
grp_sig_wf, 
assert_of_le_int, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
applyEquality, 
instantiate, 
independent_isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
natural_numberEquality, 
productElimination, 
dependent_set_memberEquality
Latex:
|(<\mBbbZ{}+>\mdownarrow{}hgrp)|  \msubseteq{}r  \mBbbN{}
Date html generated:
2019_10_15-AM-10_33_13
Last ObjectModification:
2018_09_17-PM-06_24_04
Theory : groups_1
Home
Index