Nuprl Lemma : grp_car_inc

|(<ℤ+>↓hgrp)| ⊆r ℕ


Proof




Definitions occuring in Statement :  int_add_grp: <ℤ+> hgrp_of_ocgrp: g↓hgrp grp_car: |g| nat: subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] hgrp_of_ocgrp: g↓hgrp grp_car: |g| pi1: fst(t) guard: {T} uimplies: supposing a hgrp_car: |g|+ grp_leq: a ≤ b int_add_grp: <ℤ+> grp_le: b pi2: snd(t) grp_id: e infix_ap: y uiff: uiff(P;Q) and: P ∧ Q nat: prop:
Lemmas referenced :  grp_car_wf hgrp_of_ocgrp_wf int_add_grp_wf2 hgrp_car_properties int_add_grp_wf mon_subtype_grp_sig grp_subtype_mon abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf mon_wf grp_sig_wf assert_of_le_int le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule applyEquality instantiate independent_isectElimination hypothesisEquality setElimination rename natural_numberEquality productElimination dependent_set_memberEquality

Latex:
|(<\mBbbZ{}+>\mdownarrow{}hgrp)|  \msubseteq{}r  \mBbbN{}



Date html generated: 2019_10_15-AM-10_33_13
Last ObjectModification: 2018_09_17-PM-06_24_04

Theory : groups_1


Home Index