Nuprl Lemma : inj_mon_hom_wf

[g,h:GrpSig].  (InjMonHom(g;h) ∈ Type)


Proof




Definitions occuring in Statement :  inj_mon_hom: InjMonHom(g;h) grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  inj_mon_hom: InjMonHom(g;h) uall: [x:A]. B[x] member: t ∈ T monoid_hom: MonHom(M1,M2) prop:
Lemmas referenced :  monoid_hom_wf inject_wf grp_car_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[g,h:GrpSig].    (InjMonHom(g;h)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-00_10_15
Last ObjectModification: 2015_12_26-PM-11_44_45

Theory : groups_1


Home Index