Nuprl Lemma : int_hgrp_to_nat_wf
∀[n:|(<ℤ+>↓hgrp)|]. (nat(n) ∈ ℕ)
Proof
Definitions occuring in Statement : 
int_hgrp_to_nat: nat(n)
, 
int_add_grp: <ℤ+>
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
int_hgrp_to_nat: nat(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
grp_car_subtype, 
grp_car_wf, 
hgrp_of_ocgrp_wf, 
int_add_grp_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination
Latex:
\mforall{}[n:|(<\mBbbZ{}+>\mdownarrow{}hgrp)|].  (nat(n)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_15-PM-00_19_35
Last ObjectModification:
2015_12_26-PM-11_37_27
Theory : groups_1
Home
Index