Nuprl Lemma : int_hgrp_to_nat_wf

[n:|(<ℤ+>↓hgrp)|]. (nat(n) ∈ ℕ)


Proof




Definitions occuring in Statement :  int_hgrp_to_nat: nat(n) int_add_grp: <ℤ+> hgrp_of_ocgrp: g↓hgrp grp_car: |g| nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  int_hgrp_to_nat: nat(n) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  grp_car_subtype grp_car_wf hgrp_of_ocgrp_wf int_add_grp_wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesisEquality applyEquality thin lemma_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry isectElimination

Latex:
\mforall{}[n:|(<\mBbbZ{}+>\mdownarrow{}hgrp)|].  (nat(n)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-00_19_35
Last ObjectModification: 2015_12_26-PM-11_37_27

Theory : groups_1


Home Index