Nuprl Lemma : grp_car_subtype

|(<ℤ+>↓hgrp)| ⊆r ℕ


Proof




Definitions occuring in Statement :  int_add_grp: <ℤ+> hgrp_of_ocgrp: g↓hgrp grp_car: |g| nat: subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T nat: hgrp_of_ocgrp: g↓hgrp grp_car: |g| pi1: fst(t) hgrp_car: |g|+ int_add_grp: <ℤ+> uall: [x:A]. B[x] prop:
Lemmas referenced :  grp_car_wf hgrp_of_ocgrp_wf int_add_grp_wf2 zero-le-nat grp_car_inc le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality dependent_set_memberEquality cut hypothesisEquality applyEquality thin sqequalHypSubstitution sqequalRule setElimination rename introduction extract_by_obid isectElimination hypothesis natural_numberEquality

Latex:
|(<\mBbbZ{}+>\mdownarrow{}hgrp)|  \msubseteq{}r  \mBbbN{}



Date html generated: 2019_10_15-AM-10_33_18
Last ObjectModification: 2018_09_18-PM-00_38_49

Theory : groups_1


Home Index