Nuprl Lemma : int_mul_mon_wf
<ℤ,*> ∈ AbMon
Proof
Definitions occuring in Statement : 
int_mul_mon: <ℤ,*>
, 
abmonoid: AbMon
, 
member: t ∈ T
Definitions unfolded in proof : 
int_mul_mon: <ℤ,*>
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
ident: Ident(T;op;id)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
comm: Comm(T;op)
Lemmas referenced : 
int_term_value_constant_lemma, 
itermConstant_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
le_int_wf, 
eq_int_wf, 
mk_abmonoid
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
multiplyEquality, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
isect_memberFormation, 
introduction, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality
Latex:
<\mBbbZ{},*>  \mmember{}  AbMon
Date html generated:
2016_05_15-PM-00_18_19
Last ObjectModification:
2016_01_15-PM-11_06_26
Theory : groups_1
Home
Index