Nuprl Lemma : int_mul_mon_wf

<ℤ,*> ∈ AbMon


Proof




Definitions occuring in Statement :  int_mul_mon: <ℤ,*> abmonoid: AbMon member: t ∈ T
Definitions unfolded in proof :  int_mul_mon: <ℤ,*> uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a assoc: Assoc(T;op) infix_ap: y all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: ident: Ident(T;op;id) and: P ∧ Q cand: c∧ B comm: Comm(T;op)
Lemmas referenced :  int_term_value_constant_lemma itermConstant_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int le_int_wf eq_int_wf mk_abmonoid
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality hypothesis multiplyEquality natural_numberEquality independent_isectElimination sqequalRule isect_memberFormation introduction dependent_functionElimination because_Cache unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality independent_pairFormation productElimination independent_pairEquality

Latex:
<\mBbbZ{},*>  \mmember{}  AbMon



Date html generated: 2016_05_15-PM-00_18_19
Last ObjectModification: 2016_01_15-PM-11_06_26

Theory : groups_1


Home Index