Nuprl Lemma : nat_op_mon_hom_1
∀[g:IMonoid]. ∀[a:|g|].  IsMonHom{<ℕ,+>,g}(λn.(n ⋅ a))
Proof
Definitions occuring in Statement : 
nat_add_mon: <ℕ,+>
, 
mon_nat_op: n ⋅ e
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
imon: IMonoid
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
nat_add_mon: <ℕ,+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_id: e
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
imon: IMonoid
Lemmas referenced : 
mon_nat_op_add, 
nat_wf, 
mon_nat_op_zero, 
grp_car_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename
Latex:
\mforall{}[g:IMonoid].  \mforall{}[a:|g|].    IsMonHom\{<\mBbbN{},+>,g\}(\mlambda{}n.(n  \mcdot{}  a))
Date html generated:
2016_05_15-PM-00_18_03
Last ObjectModification:
2015_12_26-PM-11_38_31
Theory : groups_1
Home
Index