Nuprl Lemma : nat_op_mon_hom_2

[g:IAbMonoid]. ∀[n:ℕ].  IsMonHom{g,g}(λa.(n ⋅ a))


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e monoid_hom_p: IsMonHom{M1,M2}(f) iabmonoid: IAbMonoid nat: uall: [x:A]. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q iabmonoid: IAbMonoid imon: IMonoid
Lemmas referenced :  mon_nat_op_op grp_car_wf mon_nat_op_id nat_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename isect_memberEquality axiomEquality because_Cache productElimination independent_pairEquality

Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[n:\mBbbN{}].    IsMonHom\{g,g\}(\mlambda{}a.(n  \mcdot{}  a))



Date html generated: 2016_05_15-PM-00_18_06
Last ObjectModification: 2015_12_26-PM-11_38_28

Theory : groups_1


Home Index