Nuprl Lemma : nat_op_mon_hom_2
∀[g:IAbMonoid]. ∀[n:ℕ].  IsMonHom{g,g}(λa.(n ⋅ a))
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
iabmonoid: IAbMonoid
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
Lemmas referenced : 
mon_nat_op_op, 
grp_car_wf, 
mon_nat_op_id, 
nat_wf, 
iabmonoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[n:\mBbbN{}].    IsMonHom\{g,g\}(\mlambda{}a.(n  \mcdot{}  a))
Date html generated:
2016_05_15-PM-00_18_06
Last ObjectModification:
2015_12_26-PM-11_38_28
Theory : groups_1
Home
Index