Nuprl Lemma : mon_nat_op_op
∀[g:IAbMonoid]. ∀[n:ℕ]. ∀[a,b:|g|].  ((n ⋅ (a * b)) = ((n ⋅ a) * (n ⋅ b)) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
infix_ap: x f y
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
grp_car_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
iabmonoid_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_nat_op_zero, 
grp_op_wf, 
iff_weakening_equal, 
grp_id_wf, 
mon_ident, 
mon_nat_op_unroll, 
infix_ap_wf, 
mon_nat_op_wf, 
le_wf, 
mon_assoc, 
abmonoid_ac_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
because_Cache, 
unionElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[g:IAbMonoid].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b:|g|].    ((n  \mcdot{}  (a  *  b))  =  ((n  \mcdot{}  a)  *  (n  \mcdot{}  b)))
Date html generated:
2017_10_01-AM-08_16_35
Last ObjectModification:
2017_02_28-PM-02_02_22
Theory : groups_1
Home
Index