Nuprl Lemma : ocgrp_inverse
∀[g:OGrp]. ∀[x:|g|].  (((x * (~ x)) = e ∈ |g|) ∧ (((~ x) * x) = e ∈ |g|))
Proof
Definitions occuring in Statement : 
ocgrp: OGrp, 
grp_inv: ~, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
and: P ∧ Q, 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
inverse: Inverse(T;op;id;inv), 
and: P ∧ Q, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon
Lemmas referenced : 
ocgrp_properties, 
grp_car_wf, 
ocgrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
setElimination, 
rename
Latex:
\mforall{}[g:OGrp].  \mforall{}[x:|g|].    (((x  *  (\msim{}  x))  =  e)  \mwedge{}  (((\msim{}  x)  *  x)  =  e))
Date html generated:
2016_05_15-PM-00_13_12
Last ObjectModification:
2015_12_26-PM-11_41_59
Theory : groups_1
Home
Index