Nuprl Lemma : ocgrp_inverse

[g:OGrp]. ∀[x:|g|].  (((x (~ x)) e ∈ |g|) ∧ (((~ x) x) e ∈ |g|))


Proof




Definitions occuring in Statement :  ocgrp: OGrp grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inverse: Inverse(T;op;id;inv) and: P ∧ Q ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon
Lemmas referenced :  ocgrp_properties grp_car_wf ocgrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality productElimination independent_pairEquality axiomEquality setElimination rename

Latex:
\mforall{}[g:OGrp].  \mforall{}[x:|g|].    (((x  *  (\msim{}  x))  =  e)  \mwedge{}  (((\msim{}  x)  *  x)  =  e))



Date html generated: 2016_05_15-PM-00_13_12
Last ObjectModification: 2015_12_26-PM-11_41_59

Theory : groups_1


Home Index