Nuprl Lemma : ocgrp_properties

[g:OGrp]. Inverse(|g|;*;e;~)


Proof




Definitions occuring in Statement :  ocgrp: OGrp grp_inv: ~ grp_id: e grp_op: * grp_car: |g| inverse: Inverse(T;op;id;inv) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon sq_stable: SqStable(P) implies:  Q squash: T inverse: Inverse(T;op;id;inv) and: P ∧ Q
Lemmas referenced :  ocgrp_wf grp_inv_wf grp_id_wf grp_op_wf grp_car_wf sq_stable__inverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[g:OGrp].  Inverse(|g|;*;e;\msim{})



Date html generated: 2016_05_15-PM-00_13_10
Last ObjectModification: 2016_01_15-PM-11_05_21

Theory : groups_1


Home Index