Nuprl Lemma : ocgrp_properties
∀[g:OGrp]. Inverse(|g|;*;e;~)
Proof
Definitions occuring in Statement :
ocgrp: OGrp
,
grp_inv: ~
,
grp_id: e
,
grp_op: *
,
grp_car: |g|
,
inverse: Inverse(T;op;id;inv)
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
ocgrp: OGrp
,
ocmon: OCMon
,
abmonoid: AbMon
,
mon: Mon
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
squash: ↓T
,
inverse: Inverse(T;op;id;inv)
,
and: P ∧ Q
Lemmas referenced :
ocgrp_wf,
grp_inv_wf,
grp_id_wf,
grp_op_wf,
grp_car_wf,
sq_stable__inverse
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
lemma_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
independent_functionElimination,
sqequalRule,
imageMemberEquality,
baseClosed,
imageElimination,
isect_memberEquality,
productElimination,
independent_pairEquality,
axiomEquality
Latex:
\mforall{}[g:OGrp]. Inverse(|g|;*;e;\msim{})
Date html generated:
2016_05_15-PM-00_13_10
Last ObjectModification:
2016_01_15-PM-11_05_21
Theory : groups_1
Home
Index