Nuprl Lemma : tidentity_wf_for_mon_hom
∀[g:IMonoid]. (Id{|g|} ∈ MonHom(g,g))
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
imon: IMonoid
, 
grp_car: |g|
, 
tidentity: Id{T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
imon: IMonoid
, 
prop: ℙ
Lemmas referenced : 
mon_hom_p_id, 
monoid_hom_p_wf, 
imon_wf, 
tidentity_wf, 
grp_car_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:IMonoid].  (Id\{|g|\}  \mmember{}  MonHom(g,g))
Date html generated:
2016_05_15-PM-00_10_30
Last ObjectModification:
2015_12_26-PM-11_44_31
Theory : groups_1
Home
Index