Nuprl Lemma : tidentity_wf_for_mon_hom

[g:IMonoid]. (Id{|g|} ∈ MonHom(g,g))


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) imon: IMonoid grp_car: |g| tidentity: Id{T} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monoid_hom: MonHom(M1,M2) imon: IMonoid prop:
Lemmas referenced :  mon_hom_p_id monoid_hom_p_wf imon_wf tidentity_wf grp_car_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:IMonoid].  (Id\{|g|\}  \mmember{}  MonHom(g,g))



Date html generated: 2016_05_15-PM-00_10_30
Last ObjectModification: 2015_12_26-PM-11_44_31

Theory : groups_1


Home Index