Nuprl Lemma : mon_hom_p_id

[g:GrpSig]. IsMonHom{g,g}(Id{|g|})


Proof




Definitions occuring in Statement :  monoid_hom_p: IsMonHom{M1,M2}(f) grp_car: |g| grp_sig: GrpSig tidentity: Id{T} uall: [x:A]. B[x]
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) tidentity: Id{T} identity: Id uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B infix_ap: y
Lemmas referenced :  grp_op_wf grp_car_wf grp_id_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache independent_pairFormation productElimination independent_pairEquality

Latex:
\mforall{}[g:GrpSig].  IsMonHom\{g,g\}(Id\{|g|\})



Date html generated: 2016_05_15-PM-00_10_25
Last ObjectModification: 2015_12_26-PM-11_44_40

Theory : groups_1


Home Index