Nuprl Lemma : mon_hom_p_id
∀[g:GrpSig]. IsMonHom{g,g}(Id{|g|})
Proof
Definitions occuring in Statement : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
tidentity: Id{T}
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
tidentity: Id{T}
, 
identity: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
infix_ap: x f y
Lemmas referenced : 
grp_op_wf, 
grp_car_wf, 
grp_id_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_pairFormation, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[g:GrpSig].  IsMonHom\{g,g\}(Id\{|g|\})
Date html generated:
2016_05_15-PM-00_10_25
Last ObjectModification:
2015_12_26-PM-11_44_40
Theory : groups_1
Home
Index