Nuprl Lemma : det_ideal_ap_elim
∀r:CRng. ∀a:Ideal(r){i}. ∀d:detach_fun(|r|;a).  ((∀w:|r|. SqStable(a w)) 
⇒ (∀v:|r|. (↑(d v) 
⇐⇒ a v)))
Proof
Definitions occuring in Statement : 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
assert: ↑b
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ideal: Ideal(r){i}
, 
guard: {T}
, 
detach_fun: detach_fun(T;A)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
detach_fun_properties, 
assert_wf, 
rng_car_wf, 
all_wf, 
sq_stable_wf, 
detach_fun_wf, 
ideal_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
productElimination
Latex:
\mforall{}r:CRng.  \mforall{}a:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;a).
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  (\mforall{}v:|r|.  (\muparrow{}(d  v)  \mLeftarrow{}{}\mRightarrow{}  a  v)))
Date html generated:
2016_05_15-PM-00_23_20
Last ObjectModification:
2015_12_27-AM-00_00_51
Theory : rings_1
Home
Index