Nuprl Lemma : det_ideal_ap_elim

r:CRng. ∀a:Ideal(r){i}. ∀d:detach_fun(|r|;a).  ((∀w:|r|. SqStable(a w))  (∀v:|r|. (↑(d v) ⇐⇒ v)))


Proof




Definitions occuring in Statement :  ideal: Ideal(r){i} crng: CRng rng_car: |r| detach_fun: detach_fun(T;A) assert: b sq_stable: SqStable(P) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T ideal: Ideal(r){i} guard: {T} detach_fun: detach_fun(T;A) prop: rev_implies:  Q crng: CRng rng: Rng so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  detach_fun_properties assert_wf rng_car_wf all_wf sq_stable_wf detach_fun_wf ideal_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache setElimination rename hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination applyEquality sqequalRule lambdaEquality productElimination

Latex:
\mforall{}r:CRng.  \mforall{}a:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;a).
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  (\mforall{}v:|r|.  (\muparrow{}(d  v)  \mLeftarrow{}{}\mRightarrow{}  a  v)))



Date html generated: 2016_05_15-PM-00_23_20
Last ObjectModification: 2015_12_27-AM-00_00_51

Theory : rings_1


Home Index