Nuprl Lemma : p-adic-inv-lemma

p:{p:{2...}| prime(p)} . ∀a:{a:p-adics(p)| ¬((a 1) 0 ∈ ℤ)} . ∀n:ℕ+.  (∃c:ℕp^n [((c (a n)) ≡ mod p^n)])


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) eqmod: a ≡ mod m prime: prime(a) exp: i^n int_upper: {i...} int_seg: {i..j-} nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A set: {x:A| B[x]}  apply: a multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T subtract: m spreadn: spread7 genrec-ap: genrec-ap p-reduce: mod(p^n) modulus: mod n p-adic-inv-lemma1 gcd-reduce-coprime gcd-reduce-ext uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  p-adic-inv-lemma1 lifting-strict-spread istype-void strict4-spread gcd-reduce-coprime gcd-reduce-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}a:\{a:p-adics(p)|  \mneg{}((a  1)  =  0)\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    (\mexists{}c:\mBbbN{}p\^{}n  [((c  *  (a  n))  \mequiv{}  1  mod  p\^{}n)])



Date html generated: 2019_10_15-AM-10_34_47
Last ObjectModification: 2019_06_20-PM-06_50_52

Theory : rings_1


Home Index