Nuprl Lemma : p-adic-inv-lemma1

p:{p:{2...}| prime(p)} . ∀a:{a:p-adics(p)| ¬((a 1) 0 ∈ ℤ)} . ∀n:ℕ+.  (∃c:ℕp^n [((c (a n)) ≡ mod p^n)])


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) eqmod: a ≡ mod m prime: prime(a) exp: i^n int_upper: {i...} int_seg: {i..j-} nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A set: {x:A| B[x]}  apply: a multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat_plus: + int_upper: {i...} le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True prop: less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) p-adics: p-adics(p) int_seg: {i..j-} nat: assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 exp: i^n eqmod: a ≡ mod m divides: a lelt: i ≤ j < k sq_exists: x:A [B[x]]
Lemmas referenced :  p-adic-property decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes istype-void zero-add le-add-cancel less_than_wf subtype_rel_sets le_wf sq_stable_from_decidable prime_wf decidable__prime upper_subtype_nat int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtype_base_sq nat_plus_wf set_subtype_base int_subtype_base exp-positive exp1 p-adics_wf lelt_wf exp_wf2 false_wf int_upper_wf nat_wf primrec-wf2 set_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf coprime_wf exp0_lemma coprime_bezout_id exists_wf equal-wf-base int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_eq_lemma itermMultiply_wf itermAdd_wf intformeq_wf decidable__equal_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf primrec-unroll coprime_prod nat_plus_subtype_nat coprime_iff_ndivides divides_wf nat_plus_properties divisor_bound subtype_rel_set int_seg_properties coprime_inversion gcd-reduce-coprime p-reduce_wf eqmod_wf eqmod_functionality_wrt_eqmod multiply_functionality_wrt_eqmod p-reduce-eqmod eqmod_weakening exp_wf_nat_plus itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality_alt setElimination rename because_Cache hypothesis productElimination natural_numberEquality hypothesisEquality unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination isectElimination sqequalRule applyEquality lambdaEquality_alt isect_memberEquality_alt universeIsType intEquality closedConclusion imageMemberEquality baseClosed setIsType imageElimination approximateComputation dependent_pairFormation_alt int_eqEquality instantiate cumulativity equalityTransitivity equalitySymmetry functionIsType equalityIsType4 lambdaEquality dependent_pairFormation dependent_set_memberEquality voidEquality isect_memberEquality lambdaFormation baseApply promote_hyp equalityElimination inhabitedIsType pointwiseFunctionality applyLambdaEquality equalityIsType1 dependent_set_memberFormation_alt multiplyEquality minusEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}a:\{a:p-adics(p)|  \mneg{}((a  1)  =  0)\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    (\mexists{}c:\mBbbN{}p\^{}n  [((c  *  (a  n))  \mequiv{}  1  mod  p\^{}n)])



Date html generated: 2019_10_15-AM-10_34_43
Last ObjectModification: 2018_10_16-AM-00_03_13

Theory : rings_1


Home Index