Nuprl Lemma : p-adic-property

p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+. ∀m:{n...}.  ((a m) ≡ (a n) mod p^n)


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) eqmod: a ≡ mod m exp: i^n int_upper: {i...} nat_plus: + all: x:A. B[x] apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + p-adics: p-adics(p) decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q int_seg: {i..j-} nat: guard: {T} lelt: i ≤ j < k so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  int_upper: {i...} subtract: m sq_type: SQType(T) sq_stable: SqStable(P) squash: T iff: ⇐⇒ Q rev_implies:  Q p-reduce: mod(p^n)
Lemmas referenced :  eqmod_wf exp_wf2 nat_plus_subtype_nat subtract_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_wf less_than_wf int_seg_wf int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma le_wf set_wf primrec-wf2 nat_properties nat_wf int_upper_properties minus-one-mul add-swap add-mul-special zero-mul add-zero subtype_base_sq int_subtype_base int_upper_wf nat_plus_wf p-adics_wf eqmod_weakening sq_stable__eqmod decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf modulus-equal-iff-eqmod exp_wf_nat_plus p-reduce-eqmod-exp eqmod_inversion eqmod_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_set_memberEquality addEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality productElimination hyp_replacement instantiate functionExtensionality cumulativity imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{n...\}.    ((a  m)  \mequiv{}  (a  n)  mod  p\^{}n)



Date html generated: 2018_05_21-PM-03_19_37
Last ObjectModification: 2018_05_19-AM-08_12_17

Theory : rings_1


Home Index