Nuprl Lemma : ring_hom_wf

[r,s:RngSig].  (RingHom(r;s) ∈ ℙ)


Proof




Definitions occuring in Statement :  ring_hom: RingHom(R;S) rng_sig: RngSig uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  ring_hom: RingHom(R;S) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] and: P ∧ Q prop: so_apply: x[s]
Lemmas referenced :  set_wf rng_car_wf and_wf fun_thru_2op_wf rng_plus_wf rng_times_wf equal_wf rng_one_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[r,s:RngSig].    (RingHom(r;s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_25_13
Last ObjectModification: 2015_12_27-AM-00_00_00

Theory : rings_1


Home Index