Nuprl Lemma : ring_hom_wf
∀[r,s:RngSig]. (RingHom(r;s) ∈ ℙ)
Proof
Definitions occuring in Statement :
ring_hom: RingHom(R;S)
,
rng_sig: RngSig
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
ring_hom: RingHom(R;S)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
set_wf,
rng_car_wf,
and_wf,
fun_thru_2op_wf,
rng_plus_wf,
rng_times_wf,
equal_wf,
rng_one_wf,
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
functionEquality,
hypothesisEquality,
hypothesis,
lambdaEquality,
applyEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[r,s:RngSig]. (RingHom(r;s) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_25_13
Last ObjectModification:
2015_12_27-AM-00_00_00
Theory : rings_1
Home
Index