Nuprl Lemma : ring_hom_wf
∀[r,s:RngSig].  (RingHom(r;s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
ring_hom: RingHom(R;S)
, 
rng_sig: RngSig
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
ring_hom: RingHom(R;S)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
set_wf, 
rng_car_wf, 
and_wf, 
fun_thru_2op_wf, 
rng_plus_wf, 
rng_times_wf, 
equal_wf, 
rng_one_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r,s:RngSig].    (RingHom(r;s)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_25_13
Last ObjectModification:
2015_12_27-AM-00_00_00
Theory : rings_1
Home
Index