Nuprl Lemma : ringeq_int_terms_weakening
∀[r:Rng]. ∀[t1,t2:int_term()].  t1 ≡ t2 supposing t1 = t2 ∈ int_term()
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2
, 
rng: Rng
, 
int_term: int_term()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rng: Rng
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
ringeq_int_terms: t1 ≡ t2
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_car_wf, 
ring_term_value_wf, 
int_term_wf, 
equal_wf, 
and_wf
Rules used in proof : 
equalityTransitivity, 
isect_memberEquality, 
intEquality, 
functionEquality, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
productElimination, 
rename, 
setElimination, 
applyLambdaEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
dependent_set_memberEquality, 
equalitySymmetry, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t1  =  t2
Date html generated:
2018_05_21-PM-03_15_57
Last ObjectModification:
2018_01_25-PM-02_18_25
Theory : rings_1
Home
Index