Nuprl Lemma : ringeq_int_terms_weakening

[r:Rng]. ∀[t1,t2:int_term()].  t1 ≡ t2 supposing t1 t2 ∈ int_term()


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 rng: Rng int_term: int_term() uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  rng: Rng prop: and: P ∧ Q all: x:A. B[x] ringeq_int_terms: t1 ≡ t2 uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_car_wf ring_term_value_wf int_term_wf equal_wf and_wf
Rules used in proof :  equalityTransitivity isect_memberEquality intEquality functionEquality axiomEquality dependent_functionElimination lambdaEquality sqequalRule because_Cache productElimination rename setElimination applyLambdaEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality independent_pairFormation hypothesis dependent_set_memberEquality equalitySymmetry lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t1  =  t2



Date html generated: 2018_05_21-PM-03_15_57
Last ObjectModification: 2018_01_25-PM-02_18_25

Theory : rings_1


Home Index