Nuprl Lemma : ringeq_int_terms_wf
∀[t1,t2:int_term()]. ∀[r:Rng].  (t1 ≡ t2 ∈ ℙ)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2
, 
rng: Rng
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
ringeq_int_terms: t1 ≡ t2
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_term_wf, 
rng_wf, 
ring_term_value_wf, 
equal_wf, 
rng_car_wf, 
all_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
intEquality, 
functionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[t1,t2:int\_term()].  \mforall{}[r:Rng].    (t1  \mequiv{}  t2  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-03_15_50
Last ObjectModification:
2018_01_25-PM-02_18_16
Theory : rings_1
Home
Index