Nuprl Lemma : ringeq_int_terms_wf

[t1,t2:int_term()]. ∀[r:Rng].  (t1 ≡ t2 ∈ ℙ)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 rng: Rng int_term: int_term() uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng ringeq_int_terms: t1 ≡ t2 member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_term_wf rng_wf ring_term_value_wf equal_wf rng_car_wf all_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache applyEquality functionExtensionality lambdaEquality hypothesis hypothesisEquality rename setElimination intEquality functionEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[t1,t2:int\_term()].  \mforall{}[r:Rng].    (t1  \mequiv{}  t2  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-03_15_50
Last ObjectModification: 2018_01_25-PM-02_18_16

Theory : rings_1


Home Index