Nuprl Lemma : algebra_act_times_r

[A:Rng]. ∀[m:algebra{i:l}(A)]. ∀[a:|A|]. ∀[u,v:m.car].
  (((m.act (u m.times v)) ((m.act u) m.times v) ∈ m.car)
  ∧ ((m.act (u m.times v)) (u m.times (m.act v)) ∈ m.car))


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) alg_act: a.act alg_times: a.times alg_car: a.car uall: [x:A]. B[x] infix_ap: y and: P ∧ Q apply: a equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] rng: Rng algebra: algebra{i:l}(A) module: A-Module guard: {T} dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
Lemmas referenced :  algebra_properties alg_car_wf rng_car_wf algebra_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_pairFormation sqequalRule independent_pairEquality axiomEquality isectElimination setElimination rename isect_memberEquality because_Cache

Latex:
\mforall{}[A:Rng].  \mforall{}[m:algebra\{i:l\}(A)].  \mforall{}[a:|A|].  \mforall{}[u,v:m.car].
    (((m.act  a  (u  m.times  v))  =  ((m.act  a  u)  m.times  v))
    \mwedge{}  ((m.act  a  (u  m.times  v))  =  (u  m.times  (m.act  a  v))))



Date html generated: 2016_05_16-AM-07_27_36
Last ObjectModification: 2015_12_28-PM-05_07_50

Theory : algebras_1


Home Index