Nuprl Lemma : algebra_properties

A:Rng. ∀m:algebra{i:l}(A).
  (IsMonoid(m.car;m.times;m.one) ∧ BiLinear(m.car;m.plus;m.times) ∧ (∀a:|A|. Dist1op2opLR(m.car;m.act a;m.times)))


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) alg_act: a.act alg_one: a.one alg_times: a.times alg_plus: a.plus alg_car: a.car all: x:A. B[x] and: P ∧ Q apply: a rng: Rng rng_car: |r| monoid_p: IsMonoid(T;op;id) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) bilinear: BiLinear(T;pl;tm)
Definitions unfolded in proof :  all: x:A. B[x] algebra: algebra{i:l}(A) uall: [x:A]. B[x] member: t ∈ T rng: Rng module: A-Module and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q sq_stable: SqStable(P) bilinear: BiLinear(T;pl;tm) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) squash: T
Lemmas referenced :  rng_wf algebra_wf squash_wf sq_stable__dist_1op_2op_lr sq_stable__all sq_stable__bilinear sq_stable__monoid_p alg_act_wf dist_1op_2op_lr_wf all_wf alg_plus_wf bilinear_wf alg_one_wf alg_times_wf rng_car_wf alg_car_wf monoid_p_wf sq_stable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination dependent_functionElimination hypothesisEquality hypothesis productElimination isect_memberEquality productEquality because_Cache sqequalRule lambdaEquality applyEquality independent_functionElimination introduction independent_pairEquality axiomEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}A:Rng.  \mforall{}m:algebra\{i:l\}(A).
    (IsMonoid(m.car;m.times;m.one)
    \mwedge{}  BiLinear(m.car;m.plus;m.times)
    \mwedge{}  (\mforall{}a:|A|.  Dist1op2opLR(m.car;m.act  a;m.times)))



Date html generated: 2016_05_16-AM-07_27_27
Last ObjectModification: 2016_01_16-PM-09_59_55

Theory : algebras_1


Home Index