Nuprl Lemma : sq_stable__dist_1op_2op_lr
∀[A:Type]. ∀[f:A ⟶ A]. ∀[x:A ⟶ A ⟶ A]. SqStable(Dist1op2opLR(A;f;x))
Proof
Definitions occuring in Statement :
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
infix_ap: x f y
,
so_apply: x[s]
,
implies: P
⇒ Q
,
prop: ℙ
,
sq_stable: SqStable(P)
,
and: P ∧ Q
Lemmas referenced :
sq_stable__uall,
uall_wf,
and_wf,
equal_wf,
sq_stable__and,
sq_stable__equal,
squash_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
hypothesis,
independent_functionElimination,
because_Cache,
isect_memberEquality,
lambdaFormation,
dependent_functionElimination,
productElimination,
independent_pairEquality,
axiomEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[f:A {}\mrightarrow{} A]. \mforall{}[x:A {}\mrightarrow{} A {}\mrightarrow{} A]. SqStable(Dist1op2opLR(A;f;x))
Date html generated:
2016_05_15-PM-00_02_39
Last ObjectModification:
2015_12_26-PM-11_25_31
Theory : gen_algebra_1
Home
Index