Nuprl Lemma : sq_stable__dist_1op_2op_lr
∀[A:Type]. ∀[f:A ⟶ A]. ∀[x:A ⟶ A ⟶ A].  SqStable(Dist1op2opLR(A;f;x))
Proof
Definitions occuring in Statement : 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
infix_ap: x f y, 
so_apply: x[s], 
implies: P ⇒ Q, 
prop: ℙ, 
sq_stable: SqStable(P), 
and: P ∧ Q
Lemmas referenced : 
sq_stable__uall, 
uall_wf, 
and_wf, 
equal_wf, 
sq_stable__and, 
sq_stable__equal, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[x:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].    SqStable(Dist1op2opLR(A;f;x))
Date html generated:
2016_05_15-PM-00_02_39
Last ObjectModification:
2015_12_26-PM-11_25_31
Theory : gen_algebra_1
Home
Index