Nuprl Lemma : sq_stable__bilinear
∀[T:Type]. ∀[pl,tm:T ⟶ T ⟶ T]. SqStable(BiLinear(T;pl;tm))
Proof
Definitions occuring in Statement :
bilinear: BiLinear(T;pl;tm)
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
bilinear: BiLinear(T;pl;tm)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
infix_ap: x f y
,
so_apply: x[s]
,
implies: P
⇒ Q
,
sq_stable: SqStable(P)
Lemmas referenced :
sq_stable__uall,
uall_wf,
equal_wf,
infix_ap_wf,
sq_stable__and,
sq_stable__equal,
squash_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
cumulativity,
because_Cache,
productEquality,
functionExtensionality,
applyEquality,
hypothesis,
independent_functionElimination,
isect_memberEquality,
lambdaFormation,
dependent_functionElimination,
productElimination,
independent_pairEquality,
axiomEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[pl,tm:T {}\mrightarrow{} T {}\mrightarrow{} T]. SqStable(BiLinear(T;pl;tm))
Date html generated:
2017_10_01-AM-08_12_54
Last ObjectModification:
2017_02_28-PM-01_57_32
Theory : gen_algebra_1
Home
Index