Nuprl Lemma : algebra_times_assoc
∀[A:Rng]. ∀[m:algebra{i:l}(A)]. ∀[x,y,z:m.car]. ((x m.times (y m.times z)) = ((x m.times y) m.times z) ∈ m.car)
Proof
Definitions occuring in Statement :
algebra: algebra{i:l}(A)
,
alg_times: a.times
,
alg_car: a.car
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
equal: s = t ∈ T
,
rng: Rng
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
rng: Rng
,
algebra: algebra{i:l}(A)
,
module: A-Module
,
guard: {T}
,
monoid_p: IsMonoid(T;op;id)
,
assoc: Assoc(T;op)
Lemmas referenced :
algebra_properties,
alg_car_wf,
rng_car_wf,
algebra_wf,
rng_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
isectElimination,
setElimination,
rename,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache
Latex:
\mforall{}[A:Rng]. \mforall{}[m:algebra\{i:l\}(A)]. \mforall{}[x,y,z:m.car].
((x m.times (y m.times z)) = ((x m.times y) m.times z))
Date html generated:
2016_05_16-AM-07_27_30
Last ObjectModification:
2015_12_28-PM-05_07_56
Theory : algebras_1
Home
Index