Nuprl Lemma : algebra_times_one

[A:Rng]. ∀[m:algebra{i:l}(A)]. ∀[x:m.car].  (((x m.times m.one) x ∈ m.car) ∧ ((m.one m.times x) x ∈ m.car))


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) alg_one: a.one alg_times: a.times alg_car: a.car uall: [x:A]. B[x] infix_ap: y and: P ∧ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] rng: Rng algebra: algebra{i:l}(A) module: A-Module guard: {T} monoid_p: IsMonoid(T;op;id) ident: Ident(T;op;id)
Lemmas referenced :  algebra_properties alg_car_wf rng_car_wf algebra_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_pairFormation sqequalRule independent_pairEquality axiomEquality isectElimination setElimination rename isect_memberEquality because_Cache

Latex:
\mforall{}[A:Rng].  \mforall{}[m:algebra\{i:l\}(A)].  \mforall{}[x:m.car].    (((x  m.times  m.one)  =  x)  \mwedge{}  ((m.one  m.times  x)  =  x))



Date html generated: 2016_05_16-AM-07_27_32
Last ObjectModification: 2015_12_28-PM-05_07_40

Theory : algebras_1


Home Index