Nuprl Lemma : calgebra_times_comm
∀[A:Rng]. ∀[m:CAlg(A)]. ∀[x,y:m.car].  ((x m.times y) = (y m.times x) ∈ m.car)
Proof
Definitions occuring in Statement : 
calgebra: CAlg(A)
, 
alg_times: a.times
, 
alg_car: a.car
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
comm: Comm(T;op)
, 
rng: Rng
, 
calgebra: CAlg(A)
, 
algebra: algebra{i:l}(A)
, 
module: A-Module
Lemmas referenced : 
calgebra_properties, 
alg_car_wf, 
rng_car_wf, 
calgebra_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
axiomEquality, 
setElimination, 
rename, 
because_Cache
Latex:
\mforall{}[A:Rng].  \mforall{}[m:CAlg(A)].  \mforall{}[x,y:m.car].    ((x  m.times  y)  =  (y  m.times  x))
Date html generated:
2016_05_16-AM-07_27_47
Last ObjectModification:
2015_12_28-PM-05_07_29
Theory : algebras_1
Home
Index