Nuprl Lemma : calgebra_times_comm

[A:Rng]. ∀[m:CAlg(A)]. ∀[x,y:m.car].  ((x m.times y) (y m.times x) ∈ m.car)


Proof




Definitions occuring in Statement :  calgebra: CAlg(A) alg_times: a.times alg_car: a.car uall: [x:A]. B[x] infix_ap: y equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] comm: Comm(T;op) rng: Rng calgebra: CAlg(A) algebra: algebra{i:l}(A) module: A-Module
Lemmas referenced :  calgebra_properties alg_car_wf rng_car_wf calgebra_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality isectElimination axiomEquality setElimination rename because_Cache

Latex:
\mforall{}[A:Rng].  \mforall{}[m:CAlg(A)].  \mforall{}[x,y:m.car].    ((x  m.times  y)  =  (y  m.times  x))



Date html generated: 2016_05_16-AM-07_27_47
Last ObjectModification: 2015_12_28-PM-05_07_29

Theory : algebras_1


Home Index