Nuprl Lemma : module_hom_action

[A:RngSig]. ∀[M,N:algebra_sig{i:l}(|A|)]. ∀[f:module_hom(A; M; N)]. ∀[u:|A|].
  ∀a:M.car. ((f (M.act a)) (N.act (f a)) ∈ N.car)


Proof




Definitions occuring in Statement :  module_hom: module_hom(A; M; N) alg_act: a.act alg_car: a.car algebra_sig: algebra_sig{i:l}(A) uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] guard: {T} module_hom_p: module_hom_p(a; m; n; f) and: P ∧ Q fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
Lemmas referenced :  module_hom_properties alg_car_wf rng_car_wf module_hom_wf algebra_sig_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination sqequalRule lambdaEquality axiomEquality because_Cache isect_memberEquality productElimination

Latex:
\mforall{}[A:RngSig].  \mforall{}[M,N:algebra\_sig\{i:l\}(|A|)].  \mforall{}[f:module\_hom(A;  M;  N)].  \mforall{}[u:|A|].
    \mforall{}a:M.car.  ((f  (M.act  u  a))  =  (N.act  u  (f  a)))



Date html generated: 2016_05_16-AM-07_27_19
Last ObjectModification: 2015_12_28-PM-05_07_34

Theory : algebras_1


Home Index