Nuprl Lemma : module_hom_plus

[A:RngSig]. ∀[M,N:algebra_sig{i:l}(|A|)]. ∀[f:module_hom(A; M; N)]. ∀[a1,a2:M.car].
  ((f (a1 M.plus a2)) ((f a1) N.plus (f a2)) ∈ N.car)


Proof




Definitions occuring in Statement :  module_hom: module_hom(A; M; N) alg_plus: a.plus alg_car: a.car algebra_sig: algebra_sig{i:l}(A) uall: [x:A]. B[x] infix_ap: y apply: a equal: t ∈ T rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] module_hom_p: module_hom_p(a; m; n; f) and: P ∧ Q fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced :  module_hom_properties alg_car_wf rng_car_wf module_hom_wf algebra_sig_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination sqequalRule isect_memberEquality isectElimination axiomEquality because_Cache

Latex:
\mforall{}[A:RngSig].  \mforall{}[M,N:algebra\_sig\{i:l\}(|A|)].  \mforall{}[f:module\_hom(A;  M;  N)].  \mforall{}[a1,a2:M.car].
    ((f  (a1  M.plus  a2))  =  ((f  a1)  N.plus  (f  a2)))



Date html generated: 2016_05_16-AM-07_27_16
Last ObjectModification: 2015_12_28-PM-05_07_37

Theory : algebras_1


Home Index