Nuprl Lemma : exists_uni_upto_char
∀T:Type. ∀r:T ⟶ T ⟶ ℙ. ∀Q:T ⟶ ℙ.  ((∃x:T. Q[x]) 
⇒ (∀x,y:T.  (Q[x] 
⇒ Q[y] 
⇒ (x [r] y))) 
⇒ (r)∃!x:T. Q[x])
Proof
Definitions occuring in Statement : 
exists_uni_upto: exists_uni_upto, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
binrel_ap: a [r] b
Definitions unfolded in proof : 
exists_uni_upto: exists_uni_upto, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uni_sat_upto: uni_sat_upto, 
and: P ∧ Q
Lemmas referenced : 
all_wf, 
binrel_ap_wf, 
exists_wf, 
uni_sat_upto_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
hypothesis, 
cumulativity, 
universeEquality, 
dependent_pairFormation, 
independent_pairFormation, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}T:Type.  \mforall{}r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.
    ((\mexists{}x:T.  Q[x])  {}\mRightarrow{}  (\mforall{}x,y:T.    (Q[x]  {}\mRightarrow{}  Q[y]  {}\mRightarrow{}  (x  [r]  y)))  {}\mRightarrow{}  (r)\mexists{}!x:T.  Q[x])
Date html generated:
2016_05_16-AM-07_45_12
Last ObjectModification:
2015_12_28-PM-05_53_37
Theory : factor_1
Home
Index