Nuprl Lemma : exists_uni_upto_char

T:Type. ∀r:T ⟶ T ⟶ ℙ. ∀Q:T ⟶ ℙ.  ((∃x:T. Q[x])  (∀x,y:T.  (Q[x]  Q[y]  (x [r] y)))  (r)∃!x:T. Q[x])


Proof




Definitions occuring in Statement :  exists_uni_upto: exists_uni_upto prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type binrel_ap: [r] b
Definitions unfolded in proof :  exists_uni_upto: exists_uni_upto all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uni_sat_upto: uni_sat_upto and: P ∧ Q
Lemmas referenced :  all_wf binrel_ap_wf exists_wf uni_sat_upto_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis cumulativity universeEquality dependent_pairFormation independent_pairFormation dependent_functionElimination because_Cache independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.
    ((\mexists{}x:T.  Q[x])  {}\mRightarrow{}  (\mforall{}x,y:T.    (Q[x]  {}\mRightarrow{}  Q[y]  {}\mRightarrow{}  (x  [r]  y)))  {}\mRightarrow{}  (r)\mexists{}!x:T.  Q[x])



Date html generated: 2016_05_16-AM-07_45_12
Last ObjectModification: 2015_12_28-PM-05_53_37

Theory : factor_1


Home Index