Nuprl Lemma : massoc_transitivity

g:IAbMonoid. ∀a,b,c:|g|.  ((a b)  (b c)  (a c))


Proof




Definitions occuring in Statement :  massoc: b all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) and: P ∧ Q guard: {T} sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  massoc_wf grp_car_wf iabmonoid_wf massoc_equiv_rel massoc_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination productElimination because_Cache independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b,c:|g|.    ((a  \msim{}  b)  {}\mRightarrow{}  (b  \msim{}  c)  {}\mRightarrow{}  (a  \msim{}  c))



Date html generated: 2016_05_16-AM-07_43_32
Last ObjectModification: 2015_12_28-PM-05_54_40

Theory : factor_1


Home Index