Nuprl Lemma : permr_upto_functionality_wrt_permr_upto

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.R[x;y])
   (∀as,as',bs,bs':T List.
        (as ≡ bs upto x,y.R[x;y] 
         as' ≡ bs' upto x,y.R[x;y] 
         (as ≡ as' upto x,y.R[x;y]  ⇐⇒ bs ≡ bs' upto x,y.R[x;y] ))))


Proof




Definitions occuring in Statement :  permr_upto: as ≡ bs upto x,y.R[x; y]  list: List equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: guard: {T}
Lemmas referenced :  equiv_rel_wf istype-universe equiv_rel_self_functionality list_wf permr_upto_wf permr_upto_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType hypothesis functionIsType universeEquality dependent_functionElimination because_Cache independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}as,as',bs,bs':T  List.
                (as  \mequiv{}  bs  upto  x,y.R[x;y] 
                {}\mRightarrow{}  as'  \mequiv{}  bs'  upto  x,y.R[x;y] 
                {}\mRightarrow{}  (as  \mequiv{}  as'  upto  x,y.R[x;y]    \mLeftarrow{}{}\mRightarrow{}  bs  \mequiv{}  bs'  upto  x,y.R[x;y]  ))))



Date html generated: 2019_10_16-PM-01_01_23
Last ObjectModification: 2018_10_08-PM-00_48_41

Theory : perms_2


Home Index