Nuprl Lemma : permr_upto_equiv_rel

T:Type. ∀R:T ⟶ T ⟶ ℙ.  (EquivRel(T;x,y.R[x;y])  EquivRel(T List;xs,ys.xs ≡ ys upto x,y.R[x;y] ))


Proof




Definitions occuring in Statement :  permr_upto: as ≡ bs upto x,y.R[x; y]  list: List equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) implies:  Q and: P ∧ Q
Lemmas referenced :  list_wf permr_upto_wf istype-universe equiv_rel_wf permr_upto_weakening permr_weakening permr_upto_inversion permr_upto_transitivity
Rules used in proof :  universeIsType sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality_alt applyEquality inhabitedIsType because_Cache functionIsType universeEquality lambdaFormation_alt independent_pairFormation independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  EquivRel(T  List;xs,ys.xs  \mequiv{}  ys  upto  x,y.R[x;y]  ))



Date html generated: 2019_10_16-PM-01_01_22
Last ObjectModification: 2018_10_08-PM-05_34_45

Theory : perms_2


Home Index