Nuprl Lemma : permr_upto_inversion

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.R[x;y])  (∀as,bs:T List.  (as ≡ bs upto x,y.R[x;y]   bs ≡ as upto x,y.R[x;y] )))


Proof




Definitions occuring in Statement :  permr_upto: as ≡ bs upto x,y.R[x; y]  list: List equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x] prop: permr_upto: as ≡ bs upto x,y.R[x; y]  cand: c∧ B exists: x:A. B[x] sym_grp: Sym(n) subtype_rel: A ⊆B uimplies: supposing a squash: T true: True and: P ∧ Q perm: Perm(T) ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top inv_perm: inv_perm(p) mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) inv_funs: InvFuns(A;B;f;g) iff: ⇐⇒ Q rev_implies:  Q compose: g tidentity: Id{T} identity: Id equiv_rel: EquivRel(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  permr_upto_wf istype-universe list_wf equiv_rel_wf inv_perm_wf int_seg_wf length_wf subtype_rel-equal perm_wf squash_wf true_wf istype-int select_wf perm_f_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma perm_properties perm_b_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType isectElimination hypothesis functionIsType universeEquality productElimination independent_pairFormation equalitySymmetry dependent_pairFormation_alt natural_numberEquality independent_isectElimination imageElimination equalityTransitivity imageMemberEquality baseClosed dependent_set_memberEquality_alt productIsType equalityIsType1 applyLambdaEquality setElimination rename because_Cache unionElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination instantiate productEquality functionExtensionality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}as,bs:T  List.    (as  \mequiv{}  bs  upto  x,y.R[x;y]    {}\mRightarrow{}  bs  \mequiv{}  as  upto  x,y.R[x;y]  )))



Date html generated: 2019_10_16-PM-01_01_13
Last ObjectModification: 2018_10_08-PM-00_25_28

Theory : perms_2


Home Index