Nuprl Lemma : mcopower_umap_comm_tri

s:DSet. ∀g:AbMon. ∀c:MCopower(s;g). ∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h). ∀j:|s|.
  ((f j) ((c.umap f) (c.inj j)) ∈ (|g| ⟶ |h|))


Proof




Definitions occuring in Statement :  mcopower: MCopower(s;g) mcopower_umap: m.umap mcopower_inj: m.inj compose: g all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uni_sat: !x:T. Q[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] dset: DSet abmonoid: AbMon mon: Mon
Lemmas referenced :  mcopower_properties set_car_wf monoid_hom_wf abmonoid_wf mcopower_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution sqequalRule hypothesis dependent_functionElimination thin hypothesisEquality productElimination isectElimination setElimination rename functionEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}c:MCopower(s;g).  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).  \mforall{}j:|s|.
    ((f  j)  =  ((c.umap  h  f)  o  (c.inj  j)))



Date html generated: 2016_05_16-AM-08_13_08
Last ObjectModification: 2015_12_28-PM-06_09_52

Theory : polynom_1


Home Index